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Utilizing Waveform Features for
Adaptive Beamforming and
Direction Finding with
Narrowband Signals
Keith W. Forsythe

■ Extensive research has been done on the use of antenna arrays for direction
finding and beamforming; this research focuses on the detailed behavior of
specific techniques rather than on actual signal processing applications. In most
applications, there is a fundamental signal feature that provides essential
leverage for an effective processing approach. This article, which is structured
around such features, presents a comprehensive framework for selecting an
appropriate adaptive approach for processing cochannel narrowband signals.
We address the roles of antenna calibration and prior waveform knowledge,
and give examples of effective, practical direction-finding and beamforming
procedures that cover a wide range of potential applications.

D   and adaptive beamform-
ing for narrowband sources in cochannel
interference are traditionally performed with

adaptive antenna arrays by employing high-resolu-
tion spectral estimators such as multiple signal classi-
fication, or MUSIC [1–3]. These estimators resolve
closely spaced emitters by eigenanalyzing an array co-
variance matrix, which, along with an antenna-cali-
bration table, provides enough information to esti-
mate angles of arrival and form adaptive beams.
Antenna-calibration errors can cause high-resolution
spectral estimators to behave poorly. Consequently,
adaptive beamformers based on direction-finding es-
timates also can suffer performance losses.

Known properties of signal waveforms can often
be exploited to form adaptive beams without relying
on any antenna calibration. In many cases, the level
of performance achieved is close to that of the best
possible adaptive beamformer: one that maximizes
signal-to-interference-plus-noise ratio (SINR). In ad-

dition, the combination of waveform feature exploi-
tation and antenna calibration can lead to better di-
rection-finding algorithms.

A simple model of a snapshot taken at the output
of an array can be expressed by

z x n( ) ( ) ( ) ( ) ,t u a t tT i i
i

S

= +
=
∑

1
(1)

where z(t) is the vector of M sensor outputs at time t,
S is the number of signals received at the array, xT(ui)
is the array-response vector associated with the ith
signal arriving from direction ui, ai(t) is the ampli-
tude of the ith signal, and n(t) is receiver noise plus
background noise. The subscript T on the array-re-
sponse vector xT indicates the “true” array response
rather than an array response that matches an entry in
the array’s calibration table x(u). The two differ by
calibration errors, which are an important compo-
nent of system performance. For simplicity, the
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model does not involve polarization explicitly. We
make the additional assumption that the direction
parameters ui are scalars.

The signal model represented by Equation 1 en-
compasses a variety of different approaches to adap-
tive-array processing for narrowband waveforms [4].
For the purpose of discussion, we classify adaptive-ar-
ray processing techniques into two categories. They
can either be calibration based or waveform based.
Calibration-based techniques rely exclusively on ac-
curate antenna calibration to form adaptive beams
and provide direction finding. Waveform-based ap-
proaches additionally utilize information about the
structure of the received signals’ waveforms to form
adaptive beams or to perform direction finding.

In some cases, the joint use of calibration and array
knowledge is not robust to modeling errors (usually
because of antenna-calibration errors as opposed to
waveform uncertainties). Fortunately, many wave-
form-based procedures do not require calibration for
adaptive beamforming. Thus waveform-based tech-
niques can be used first for adaptive beamforming,
then calibration can be employed for what is often
called copy-based direction finding.

We discuss calibration-based and waveform-based
approaches to adaptive beamforming and direction
finding below. We also discuss copy-based direction
finding. The discussions focus on various assump-
tions that can be made concerning the array response
and signal parameters illustrated in Equation 1. We
present examples of procedures that are built on these
assumptions.

Calibration-Based Adaptive-Array Processing

Most of the superresolution procedures treated in the
literature are based on accurate antenna calibration.
For completeness we present here a brief survey of
calibration-based techniques. To simplify notation,
our algorithm discussions assume perfect array cali-
bration. Since calibration errors are an important
source of direction-finding and copy errors, we treat
the effects of calibration errors later.

The notation introduced in Equation 1 can be or-
ganized in a more useful manner for presenting the
results in the following sections. Specifically, we can
define the more compact notation
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Then we can rewrite Equation 1 as Z = X A + N,
where N is a matrix with independent, identically dis-
tributed columns representing receiver and back-
ground noise. For the remainder of this section, we
assume that the receiver noise and background noise
are spatially white with unit complex variance. In
other words, the entries of N are independent, identi-
cally distributed, complex circular Gaussian random
variables of unit variance.

For the purpose of discussing calibration-based
adaptive-array processing, we further categorize adap-
tive-beamforming and direction-finding procedures
based on this equation by assumptions made about
the signal amplitude matrix A. These assumptions
amount to a Gaussian or deterministic model for the
signal amplitudes. In the deterministic case, the am-
plitudes (the entries of A) are assumed to be unknown
unconstrained parameters that must be estimated in
the process of beamforming or direction finding.
Later, in the discussion of waveform-based adaptive-
array processing, constraints are placed on the allow-
able signal amplitudes. In the Gaussian case, the sig-
nal amplitude matrix A is assumed to have inde-
pendent, identically distributed columns with com-
mon covariance

P AA= −L H1E[ ],

where E[ ] represents the expectation of AAH. Both
cases are treated in more detail below.

Central to the discussion of adaptive-array process-
ing is the measurement of signal separations. Tradi-
tionally, signal separation is measured as a fraction of
the width of a steered, nonadaptive beam formed by
the array. Such definitions are often formulated on a



• FORSYTHE
Utilizing Waveform Features for Adaptive Beamforming and Direction Finding with Narrowband Signals

VOLUME 10, NUMBER 2, 1997 LINCOLN LABORATORY JOURNAL 101

case-by-case basis for each array geometry. A more ab-
stract definition of array beamwidth, presented in the
sidebar entitled “Definition and Properties of Beam-
width,” is closer to the mathematical notion of sepa-
ration and agrees as well with physical separations
when the separations are small.

Deterministic Signal Model

As discussed above, the deterministic signal model as-
sumes that the baseband antenna-array data Z are
complex circular Gaussian random matrices with
mean XA and identity (white) noise covariance

E[ ( ) ( ) ] .N N It t H
M=

The array covariance of the data Z can be expressed as

E[ ˆ ] ,R XPX I= +H
M

where P = L–1AAH. Note that we will change the
definition of P to suit the signal model under consid-
eration (deterministic or Gaussian). Thus the prob-
ability density function of the deterministic signal
model can be written as

     p eDS
LM H

Z X A Z XA Z XA| , ,[( )( ) ]( ) = − − − −π tr (2)

through which the maximum-likelihood estimates of
the signal direction parameters ui and the signal am-
plitude matrix A can be formulated. Let

P u X u X u X u X uX( ) ( )[ ( ) ( )] ( )= −H H1

define the projection matrix, parameterized by the di-
rections u = (u1, ... , uS), onto the subspace spanned
by the columns of X. Then maximum-likelihood di-
rection finding is performed by estimating the signal
direction parameters ui as expressed by solving

arg max [ ( ) ˆ ],
u

XP u Rtr (3)

where tr[ ] denotes trace. Maximum-likelihood signal
amplitude estimates of A are provided by

ˆ ,A W Z= H

where the matrix W represents the outputs of a beam-
forming matrix

W X X X= −ˆ ( ˆ ˆ ) .H 1

Each column of W forms a beam steered at the signal
represented by the corresponding column of X̂ ,
which consists of the array-response estimates based
on the signal direction parameters estimated by solv-
ing Equation 3. Each adaptive beam tries to place
nulls on all but one signal (note that W X IH

S
ˆ = ).

Gaussian Signal Model

The signal amplitudes can also be modeled as com-
plex Gaussian random variables with zero mean and
unknown covariance

P AA= −L H1E[ ].

In this case the array covariance becomes

R R XPX I= = +E[ ˆ ] .H
M

The probability distribution function of the Gaussian
signal model of the data becomes

p eG
LM L H

( | , ) .( )Z X P R R ZZ= − − − −
π tr 1

We define the real-valued function g (x):
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For any hermitian matrix Γ, we can define g (Γ ) as
follows. Let UΛUH = Γ express the eigenanalysis of Γ
in terms of the unitary matrix U whose columns are
eigenvectors of Γ, and the diagonal matrix Λ whose
entries are the corresponding eigenvalues. Then we
define

g g g M
H( ) [ ( ), ..., ( )] ,Γ = U Udiag λ λ1

where the λk are the diagonal entries of Λ. We define

ˆ ( ) ( ) ./ /R X X X R X X XX = − −H H H1 2 1 2

Then maximum-likelihood direction finding is per-
formed by finding

arg max ˆ )].
u

XRtr[ (g

Asymptotically, g (x) ≈ x when x  >> 1. Thus for
P >> IM ,

tr[ ( tr( tr(g ˆ )] ˆ ) ˆ ) ,R R P RX X X≈ =
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where dk is the three-dimensional
location of the kth antenna ele-
ment, g[ ( , )]u θ φ  is the antenna
pattern common to all elements,
and λ is the wavelength. Let

u u u∆ = −( , ) ( , ) .θ φ θ φ1 1 2 2

For small separation vectors u∆,
we have the approximation

b T2
2

16≈
λ

u Du∆ ∆

for b as defined above. The ma-
trix D is given by

D d d d d= − −
=

∑1

1
M k av k av

T

k

M

( )( ) ,

where dav is the average location
vector. By extrapolating this ex-
pression out to b = 1 (where the
array responses v( , )θ φ1 1  and
v( , )θ φ2 2  would be orthogonal if
the approximation held), we have
the definition of beamshape:

1
16

2
=

λ
u Du∆ ∆

T . (A)

Two direction-of-arrival vectors
differing by u∆ are considered to
be one beamwidth apart. This
equation is motivated by a peak-
to-null definition of beamwidth.
As mentioned above, we choose
the normalization of b so that
b = 1 corresponds to a null (or-
thogonality) in the pattern.

  b between two array-
response vectors is fundamentally
important in the geometrical in-
terpretation of adaptive-array sig-
nal processing. Mathematically, b
is proportional to the geodesic
distance between the array re-
sponses, interpreted as points in
projective space. Specifically, two
array responses v1 and v2 are b
beamwidths apart whenever

cos .
πb

H

2

1 2

1 2
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Note that b has been normalized
so that b = 1 corresponds to or-
thogonal array responses.

The abstract definition of
beamwidth given above can be
interpreted physically. Let the
function v( , )θ φ  be the modeled
array response parameterized by
zenith angle (complement of el-
evation) θ and azimuth angle φ. A
convenient coordinate system is
provided by the unit direction-
of-arrival vectors u( , )θ φ , where

u( , ) [sin( ) cos( ),
sin( ) sin( ), cos( )] .

θ φ θ φ
θ φ θ

=
T

This vector points in the direc-
tion corresponding to (θ, φ). For
arrays with perfectly matched el-
ement patterns (a common mod-
eling assumption), we can write
the response of the kth element
of the response vector v as

Equation A can be applied to
arbitrary antenna-array geom-
etries to yield a physical beam.
For example, a completely filled
(sampled arbitrarily finely) line
array of length A has a beam of
size 3 4/ /λ A. A filled circular
array of diameter A has a circular
beamshape of diameter λ/A.
Both cases, and many others, in-
dicate a beam size related to λ/A,
where A is a characteristic size of
the array. Similar beamshapes can
be motivated by Cramér-Rao
bounds on direction finding.

The physical geometry under-
lying beamwidths is particularly
simple in the case of polarization.
We consider a two-element array
with polarization response to an
incident signal P E ER L= +ˆ ˆR L,
given in terms of the right (ER )
and left (EL ) circular compo-
nents (or any fixed orthogonal
reference polarizations). The po-
larization ratio can be mapped to
the unit sphere (Poincaré sphere)
by

E

E
eR

L

i= tan( / ) ,θ φ2

where θ and φ are spherical coor-
dinates. Then the separation in
beamwidths between two inci-
dent polarizations P1 and P2 is
given by

b P P
P P

( , )
( , )

.1 2
1 2= arc length
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at least when X is near the correct value. Thus the di-
rection-finding estimates under the Gaussian signal
model approximate the estimates under the deter-
ministic signal model when the signal power matrix P
is large. When the power matrix P is small, the direc-
tion-finding procedures differ, especially when there
is more than one signal in the model (i.e., S > 1).
Gaussian direction-finding procedures are more accu-
rate with low signal powers.

Note that the Gaussian signal model does not pro-
vide adaptive beamforming. In these parametric
formulations of signal processing, beamforming is
connected with signal amplitude estimates. The
Gaussian signal model, however, does not involve pa-
rameters for the individual signal amplitudes.

The deterministic signal model provides a beam-
forming matrix W that attempts to place a null in the
estimated direction of each interferer. This procedure
does not attempt to maximize SINR at the beam-
former output and thus has suboptimal performance
even if the direction-finding estimates are perfect. To
maximize SINR for a signal with array response
x( )ui , we form the weight vector w R x= −ˆ ( )1 ui .
This beamformer can be formed under either signal
model. Calibration errors have a significant impact
on this type of beamformer, as we discuss below.

Other Approaches

There are a variety of other calibration-based ap-
proaches to direction finding and beamforming (too

Figure A illustrates the intrinsic
geometry for the case of a dual
polarized element based on the
Poincaré sphere. Linear polariza-
tions are represented by points
along the equator.

FIGURE A. The Poincaré sphere as a geometric model of  pure linear and elliptical polarization states. Each polar-
ization state (elliptical, in general) corresponds to a point on the sphere. In particular, points on the equator cor-
respond to linear polarizations. The beamwidth separation b between polarizations is expressed by the great-
circle arc length between corresponding points on the sphere, divided by π. Orthogonal polarizations correspond
to antipodal points, which are one beamwidth apart.

The ideal nulling capability of
an array can be expressed in
terms of the beamwidth separa-
tion. For example, Figure 1 in the
main text shows the loss of SINR
due to a single cochannel inter-

ferer at various beamwidth sepa-
rations and interference levels.

Note that the interpretation of
beamwidths in terms of arc
length on the sphere holds for
any two-element array.
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many to mention here), some of which are motivated
by the maximum-likelihood procedures discussed
above. Given direction-finding estimates, beamform-
ing is treated briefly in the section on adaptive beam-
forming and so will not be considered further in this
section. Most techniques are based on the eigen-
analysis of the array sample covariance

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,R E E E E= +S S S
H

N N N
HΛ Λ

where the columns of ÊS  and ÊN  are eigenvectors
corresponding to the top S and bottom M – S eigen-
values of R̂, which are the entries of the diagonal ma-
trices Λ̂S  and Λ̂N , respectively. The column span of
ÊS is called the signal subspace, and the column span
of ÊN  is called the noise subspace.

Subspace-fitting techniques are motivated by both
the deterministic and Gaussian maximum-likelihood
procedures. They solve

arg max [ ˆ ( ˆ ) ˆ ],
u

XP E Etr S S S
Hf Λ

where f  is one of a variety of scalar-valued functions.
For example,

f x
x

x
( )

( )= − 1 2

provides a technique that has the same asymptotic (in
the number of samples) accuracy as Gaussian maxi-
mum likelihood (with the noise covariance IM re-
placed by σ2IM with unknown σ) for Gaussian wave-
forms [5]. Choosing f (x ) = 1 provides a technique
sometimes called multidimensional MUSIC. In fact,
using this version of f and replacing the rank-S projec-
tor PX with the rank-one projector x x( ) ( )u uH  (as-
suming || x || = 1) leads to the MUSIC statistic:

arg max
( ) ˆ ˆ ( )

( ) ( )

arg min
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H

N N
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For future reference, replacing ˆ ˆE ES S
H with R̂  re-

sults in a direction-finding procedure called beam-
sum, which, in effect, measures the power at the out-
put of a steered (summing over element outputs)
beam as a function of steering direction u. If sources
are separated in angle sufficiently, direction-finding
performance can be good. However, performance is
often poor when sources are closely spaced (i.e.,
closely spaced in beamwidths; this can be typical if
the array has high sidelobes).

When the array is uniform linear, the modeled ar-
ray response can be written as

x( ) ( , , ) ,u x xM
T= …1

with x wk
k=  and w e idu= 2π λ/ , and where d is the

antenna-element spacing and u = cos(θ) is the direc-
tion parameter that corresponds to an angle of arrival
θ measured from the array axis. For this type of array,
the function

x E E xH
N N

Hu u( ) ˆ ˆ ( )

occurring in the MUSIC statistic can be written, after
multiplying by w J for some J (depending on the coor-
dinates used to model the array), as a polynomial
Q(w) in w restricted to the unit circle | w | = 1. Since
the minima in this polynomial correspond to esti-
mates of signal directions, it is natural to find the
roots of Q(w) and use the angles (i.e., arguments) of
the roots for signal direction estimates. Such a proce-
dure is called root MUSIC [6, 7]. Other algorithms
based on uniform linear arrays also have rooting ver-
sions. For MUSIC, rooting increases resolution with-
out any reduction in estimation accuracy. Rooting
can also be applied to planar arrays in order to esti-
mate jointly two-component signal directions (e.g.,
azimuth and elevation). Techniques of this type are
introduced in References 8 and 9. An additional ad-
vantage of rooting procedures, particularly for planar
(or three-dimensional) arrays, is the ability to per-
form direction finding without searching over all spa-
tial directions. Such a search is often the most costly
aspect of an implementation.

Another popular method, known as ESPRIT [10],
is a technique for performing direction finding by
comparing the data received simultaneously by two
congruent translation-related subarrays of a given an-
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since an arbitrary number of basis functions can be
used. Because ESPRIT cannot use the Fourier series
approach, rooting procedures have an edge in many
applications.

Adaptive Beamforming. Three types of SINR are
useful for describing copy performance and scenario
parameters. They are denoted array signal-to-noise ra-
tio (ASNR), ideal array signal-to-interference-plus-
noise ratio (ASINR), and achieved ASINR. All are
SINRs at the output of different beamformers.
ASNR, which indicates relative signal level, is the
output of a beamformer focused on the signal in the
absence of any interference except background noise.
Ideal ASINR is measured at the output of the best
possible beamformer: one that maximizes SINR in
the given environment, including interference.
Achieved ASINR is measured at the output of the
beamformer determined by a copy algorithm.

In the absence of interference, performance is de-
termined by the ASNR. With a cochannel interferer,
the ideal beamformer offers a loss in SINR at the
beam output, shown for example in Figure 1 as a

tenna array. The direction estimates relate to the
translation between the subarrays and thus consist of
a single angle. ESPRIT provides simple angle esti-
mates without a search over all spatial directions.

Impact of Calibration Errors

The direction-finding procedures described above
have a predicted performance based on the evaluation
of certain Cramér-Rao bounds or on behavior asymp-
totic in the number of samples. However, calibration
errors tend to dominate performance at moderate to
high signal levels. It is difficult to present a simple
story of the effects of calibration errors in general.
Precise statistical models of the errors are rarely avail-
able in practice and are needed to formulate perfor-
mance bounds [11]. In the case of a single modeled
signal (S = 1), however, a simple result indicates the
role of calibration errors, as discussed in the sidebar
entitled “Single-Emitter Angle Estimation.”

 Direction-Finding Accuracy. We can make some
general comments concerning the effects of calibra-
tion errors on direction finding for multiple signals.
First, techniques such as the deterministic-signal
maximum likelihood or Gaussian-signal maximum
likelihood are hypersensitive to calibration errors with
strong signals. The same comments apply to most of
the subspace-fitting procedures except those which
place equal emphasis on all signal-subspace eigenval-
ues ( f (x) ≈ 1 in the notation above). MUSIC is one
of the more robust direction-finding procedures as
well as one that is reasonable to implement. Rooting
procedures or ESPRIT can offer implementation ad-
vantages over MUSIC (and, in the case of rooting, in-
creased resolution), provided the arrays possess the
appropriate structure. However, in some cases we can
use arrays that do not have the requisite symmetry
(because of calibration errors, for example). For the
purposes of signal processing, we can obtain an effec-
tive symmetry condition either by preprocessing the
data with a fixed beamforming matrix that forces its
outputs toward the appropriate symmetry condition,
or by using a Fourier-series model of antenna-element
responses [4] and thus effectively replacing the physi-
cal array with a virtual array that possesses appropri-
ate symmetry. The Fourier-series approach is typically
better suited to handle array-response mismatches,

FIGURE 1. The presence of an interfering signal causes a
loss in the signal-to-interference-plus-noise ratio (SINR) of
a desired signal of interest at the output of  a beamformer.
With an ideal adaptive beamformer the loss can be mini-
mized. The smallest possible loss of SINR is shown in terms
of the strength of an interfering signal (measured as the ar-
ray signal-to-noise ratio of the interferer, or ASNR) and the
separation in beamwidths between the interfering signal and
the signal of interest. The loss of SINR approaches a con-
stant asymptote as the signal level of the interferer in-
creases. In this asymptotic region, a null in the adaptive
beam pattern moves ever closer to the interferer.
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S I N G L E – E M I T T E R  A N G L E  E S T I M A T I O N

The accuracy of the direction
finding estimate, in beamwidths,
for a single angle variable ψ is

STD( ) ,ψ
π ρ

= 2
2M

where ρ = ε–2 with calibration er-
rors (no noise), and ρ = L × SNR
for perfect calibration (SNR is the
signal-to-noise ratio at each ele-
ment output). There are M ele-
ments in the array. As an example,
consider sixteen samples (i.e., L =
16) of a signal received by a four-
element array with an element
SNR of 10 dB. This yields a single-
signal accuracy of about 0.02
beamwidths with perfect calibra-
tion. As indicated in Figure A,
this level of performance is also
achieved with perfect sampling
(i.e., an arbitrarily large number of
samples), given a calibration error

    of different
models for uncertainties in an-
tenna calibration. One of the
simplest represents the true array
response xT as a sum of an ideal
array response (from the calibra-
tion table) and a vector of inde-
pendent, identically distributed,
complex circular Gaussian ran-
dom variables representing the
calibration errors. The error size is
parameterized by the variance ε2

of the complex Gaussian compo-
nents. If ε2 denotes the error vari-
ance per element for unity gain el-
ements, then for small ε the gain
and phase errors are approxi-
mately ( / ln )10 2 10 ε dB and
( / )180 2π ε degrees, respec-
tively. Figure A shows the relation-
ship between the variance of the
element error and the size of gain/
phase errors.

variance of –22 dB. Thus, with
even a modest number of samples,
calibration errors can dominate
accuracy even at small signal lev-
els. Note also that the accuracy is a
small fraction of a beamwidth,
given practical levels (–22 dB, cor-
responding to 0.5 dB and 3 de-
grees) of antenna calibration. The
calibration levels required for
good estimation accuracy with
one signal can be inadequate for
sub-beamwidth resolution with
multiple signals. See Reference 1
for a treatment of multiple-signal
direction finding in the presence
of calibration errors.

References
1. A. Kuruc, “Lower Bounds on Mul-

tiple-Source Direction Finding in the
Presence of Direction-Dependent An-
tenna-Array-Calibration Errors,” Tech-
nical Report 799, Lincoln Laboratory
(24 Oct. 1989), DTIC #ADA-215825.

–30 –25 –20 –15 –10 –5 0

1

2

3

4

5

6

7

10

20

30

40

0 0.1 0.2 0.3

–30

–25

–20

–15

–10

–5

10

15

20

25

30

35

Element error size (dB)

G
ai

n 
(d

B
)

P
ha

se
 (d

eg
)

STD of angle estimate (beamwidths)

Er
ro

rs
/e

le
m

en
ts

 (d
B

)

L
 ×

 M
 ×

 S
N

R
 (d

B
)

FIGURE A. Single-emitter angle estimation. The accuracy of angle estimates depends both on the quality of antenna
calibration and on the level of the received signal. A simple model of antenna calibration expresses uncertainties in ele-
ment gain as an additive error, sized relative to the element’s nominal gain. This model can be interpreted in terms of
gain and phase errors, as shown in the plot on the left. The plot on the right shows (in the red trace) the resulting stan-
dard deviation of the angle estimates due to calibration errors (in the absence of cochannel interference) as a fraction
of an array beamwidth when the integrated signal-to-noise ratio (SNR) is asymptotically large. For comparison, the blue
trace shows the accuracy of angle estimates with perfect calibration for various integrated (over time and space) SNRs.
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function of the interferer ASNR and the beamwidth
separation between the signal and interferer. The
ASINR achieved by an algorithm suffers an addi-
tional loss, since signal parameters have to be esti-
mated from the data. For many of the maximum-like-
lihood algorithms already discussed, this additional
loss is only a few dB for a wide range of scenarios.
Thus the ideal is a reasonable goal for algorithm
design.

Adaptive beamforming also suffers from antenna-
calibration errors. Null-forming procedures such as
those based on the deterministic signal model suffer
from inadequate null depth due to such errors. Figure
2 shows the performance of null-forming weights in
the presence of independent element errors (see the
sidebar entitled “Single-Emitter Angle Estimation”)
in the estimates of the signal array responses. For vari-
ous separations of the signal of interest and the inter-
ferer, the curves indicate the cumulative distribution
functions of the achieved null depth. For example,
with array-response errors of 0.08 beamwidths and a
signal separation of 0.2 beamwidths (see the sidebar
entitled “Definition and Properties of Beamwidth”),
the median null depth is about 12 dB.

It is well known that calibration errors can also
lead to poor performance of SINR-maximizing
beamformers because of self-nulling [12]. Even per-
fect angle estimates do not prevent self-nulling. Fig-
ure 3 shows the achieved output SINR for selected
values of the cumulative distribution function, given
a perfect model of the array-response vector and an
estimated covariance (using the sample covariance
matrix as the estimate) based on one hundred
samples. Even with a strong signal of interest, the me-
dian (0.5) output SINR is no more than about 10 dB.

Several remedies improve performance substan-
tially. For null-forming approaches, we can place ad-
ditional nulls in an attempt to broaden the nulls in
the directions of interference. For SINR-maximizing
techniques, one remedy [13] replaces R̂  with a diago-
nally loaded version: R̂  + αIM . Varying the loading
factor α  trades null depth for less self-nulling. Of
course, there must be some scheme for choosing α .
Alternatively, we can replace the weight w with the
projection of w into the signal subspace of the data
[14] (the signal subspace is the span of the S largest

eigenvectors of the sample covariance matrix R̂). This
remedy improves SINR substantially for the weaker
signals.

Although the remedies mentioned above can im-
prove performance substantially for practical antenna
arrays, none offers the same level of beamforming
performance that can be attained by exploiting signal
waveforms.

Waveform-Based Adaptive-Array Processing

Narrowband signals can be placed in a variety of cat-
egories for the purpose of waveform feature exploita-
tion. These categories emphasize certain waveform
features that can be used to form data-adaptive
beams. Which feature is chosen depends on the wave-
form, the performance required, and the difficulty of
implementation. Generally speaking, most wave-
forms fit into several categories, and some categories
contain most waveforms. However, performance can
vary substantially for the same waveform when differ-
ent features are exploited. In many cases, we assume
antenna-calibration information is unavailable for
adaptive beamforming. Once signal parameters have
been estimated, these estimates can be combined with
calibration data to perform direction finding.

FIGURE 2. Interference suppression using null-forming
weights. One variant of adaptive beamforming places nulls
in the direction of the interferers. Errors in the estimated ar-
ray response of the interferers result in misplaced nulls that
reduce the achieved null depth. For estimation errors of  0.08
beamwidths, the cumulative distribution functions of the
achieved null depths are shown for four separations of  the
signal of interest and the interferers.
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The sections below entitled “Modeled Signals” and
“Statistical Signals” discuss two approaches to wave-
form-based array processing. The signals can have
parametric models based on a class of modulations, or
they can be statistical in nature. In general, algo-
rithms addressing both modeled and statistical signals
play a role in array processing. Effective procedures
can often be broken into two phases. The first phase
provides an initial level of performance—possibly far
from optimal—that is then improved in a second
phase involving iterative refinement. Parametric
models are important in the refinement phase, while
statistical signal properties are adequate for initializa-
tion. Furthermore, the algorithms discussed in the
section on statistical signals systematically handle all
signals in the environment, while most of the mod-
eled-signal approaches require some form of initial
parameter estimates.

Modeled Signals

We can treat modeled waveforms with maximum-
likelihood techniques to yield a large number of effec-
tive waveform exploitation procedures. Typical ex-
ploited features include spectral lines, pulse leading

and trailing edges, constant envelopes, known data
(training sequences), and modulation types (e.g.,
quadrature amplitude modulation). The maximum-
likelihood techniques often provide near-optimal
copy beams with small amounts of data (one hundred
to one thousand samples). Furthermore, we do not
have to use all known waveform information in order
to approach optimal copy. For example, the constant-
envelope property alone is sufficient for constant-en-
velope waveforms and provides some level of perfor-
mance (although not optimal) for other types of
waveforms.

The next section presents a concise description of
an approach to model-based data-adaptive copy. This
approach differs from well-known least-squares pro-
cedures described later in that the spatial covariance
of the background noise (which may include unde-
tected signals) is not assumed to be known (and
hence is estimated as part of the maximum-likelihood
procedure). This approach leads to a robust set of
procedures that incorporate some form of data whit-
ening, which enhances convergence rates.

Blind Adaptation. The signal model expressed by
Equation 2 can be generalized to provide the basis for
a more robust set of procedures for array processing.
Consider the probability density function

p

eML L H

BA

tr

( | , , )

.[( ) ( )]

Z X A R

R Z XA R Z XA

=

− − − − −−
π

1

Signals are modeled spatially in terms of the array-re-
sponse vectors forming the columns of X or in terms
of the spatial distribution of power expressed by the
covariance R. Signals modeled through R are treated
as Gaussian sources. Signals modeled in X have in ad-
dition amplitudes A that are treated parametrically.
Prior knowledge of these amplitudes is used to aid in
their estimation. It is useful to think of the signals as
represented by the parametric models given by X and
A, while R is used to represent an unknown colored
(spatially) noise background that may itself be com-
posed of additional signals or other types of noise
(e.g., environmental or thermal). Although R is esti-
mated implicitly below, the estimates of X and A are
the focus of the signal processing.

The most robust adaptive beamformers do not uti-
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FIGURE 3. Statistics of output SINR due to finite sampling.
Even if there is no separation, or mismatch, between the true
array response and the estimated array response, the effects
of finite sampling result in self-nulling. The SINR achieved
at the output of a beamformer is always less than the SINR
at the output of the ideal beamformer. With one hundred
data samples and no mismatch, the 0.1, 0.5, and 0.9 fractiles
of achieved SINR are shown as a function of the SINR at the
output of the ideal beamformer.
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lize antenna calibration, even if this calibration is
available. In the notation introduced above, this lack
of calibration amounts to assuming that the array-re-
sponse vectors represented by the columns of X are
unknown.

Maximizing pBA( | , , )Z X A R  over the spatial cova-
riance R yields (see Reference 15, or Appendix A in
Reference 16)

π e
L

LM
H L





− −
− −

( )( ) .Z XA Z XA

Completing the square,

( )( )

[ ( ) ]( )

[ ( ) ] ( ) ,

Z XA Z XA

X ZA AA AA

X ZA AA Z I P ZA

− − =

−

⋅ − + −

−

−

H

H H H

H H H
L

H

1

1

where PQ, for any full-rank matrix Q with at least as
many columns as rows, is the projector onto the row
space of Q. Thus

P Q Q Q QQ = −H H( ) ,1

acting from the right on row vectors.
If X can be chosen freely (in other words, if we

choose to ignore calibration), its maximum-likeli-
hood estimate is

X ZA AA= −H H( ) .1

This is a least-squares estimate of X based on the sig-
nal amplitude estimates provided by A (see the sec-
tion entitled “Least-Squares Procedures”). However,
the estimate of A is not based on the least-squares esti-
mate obtained by fixing X. If we choose X as above,
the maximum-likelihood decision for A amounts to
finding

min ( ) .
A

AZ I P ZL
H−

The Frobenius relations for partitioned matrices can
be used to show that

I BA
I A

B I
I AB− = = − .

If we use this relation, then the expression
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(4)

provides several equivalent maximum-likelihood sta-
tistics for parameter estimation.

When the signal amplitude matrix A models a
single signal (S = 1), the maximum-likelihood param-
eter estimates are provided by

arg max .A
ZAP A

AA

H

H (5)

Note that this is a constrained maximization, where
the constraints involve modulation features. Even
though this special case models only one signal, any
interferers are treated as part of the unknown spatial
covariance R; hence spatial nulling is performed.

There is a useful alternative formulation of Equa-
tion 5. By defining (W is M × 1)

µ( , )
( )( )

,W A
W Z A

W Z Z W AA
=

H H

H H H

2

we have

sup ( , ) .
W

W A
AP A

AA
Zµ =

H

H

The maximum is achieved with weights that are pro-
portional to

W ZZ ZAmax ( ) .= −H H1

Applying the weight W to the output of the array re-
sults in the time series
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Y W Z= =( , , ) .y yL
H

1 K

The dependence of Y on the weight W has been
suppressed from the notation. We can write

µ µ≡ =( , ) .W P
Y A
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H 2
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with either equality (but not both) achievable by scal-
ing W appropriately.

An algorithm for finding the maximum-likelihood
estimate of A (and for finding W) can be based on
minimizing either the left or right side of Equation 6.
Consider, for example, minimizing the right side by
alternately minimizing over the two variables Y (really
W) and A. With initial values for Y and A, the (re-
peated) update steps are as follows:

1
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We can perform the minimization in step two explic-
itly. Let PZ

⊥ represent the projection onto the comple-
ment of the row space of Z. We write

Y A
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with equality when Y APZ∝  with a real, positive
proportionality factor. This is possible since Y and
APZ both lie in the row space of Z. Let

W ZZ ZA= −( ) .H H1

Note that

AP AZ ZZ Z W ZZ = =−H H H( ) .1

Furthermore, any W that satisfies W Z APZ
H ∝  is

unique, up to a complex scalar, as long as the rows of
Z are independent, which holds with probability one
whenever L ≥ M. Thus Wmin equals W up to a scale
factor that is easily evaluated, so that

W
A

AP
ZZ ZA

Z

min ( ) .= −
2

2
1H H

In summary, an iterative solution for A can be
based on the steps

A Y A
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A
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ZZ ZA
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min min
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arg min
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.
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=

=

−

2

2

2
1H H

H

These three steps are repeated until a convergence
condition (not discussed here) is satisfied. The first
step can be regarded as demodulation. The second
step is the decision-directed component of the algo-
rithm. It feeds back demodulation decisions to up-
date the copy weight W. Note that the updated copy
weight is proportional to the product of an inverse
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sample covariance matrix ( )L H− −1 1ZZ  and an array-
response estimate ZAmin

H , which is formed by
matched-filtering the antenna-element outputs with
the estimated waveform. The third step applies the
updated copy weight W to the data Z.

For a multisignal model, the maximum-likelihood
statistic given in Equation 4 can be broken down into
an iterative application of the one-signal procedure.
This process is not discussed further here. It is worth
mentioning that the multisignal approach combines
spatial filtering (i.e., beamforming) with temporal fil-
tering to enhance copy performance in the sense of
providing better estimates of waveform parameters.

Spectral Lines. For spectral lines, which are infor-
mally called tones, we have

A = ( , , , ) .e e ei i iLθ θ θ2 K

In this case we can rewrite Equation 5 in a more con-
venient form as

max ( ) ˆ ( ) ,
k

H k kZ ZR −1
(7)

where

Z Z Z= =[ ( ), , ( )]1 K L DFTZU

is the frequency-domain data (UDFT is the L × L uni-
tary matrix that performs row-wise discrete Fourier
transforms, or DFTs) and the maximum-likelihood
statistic looks for tones in spatially whitened DFT
bins.

Figure 4 illustrates the detection of a tone in the
presence of broadband noise. As shown in this ex-
ample, a DFT at the output of a single channel does
not provide enough integration to provide detection.
In practice, signal duration or perhaps phase noise on
the spectral line can limit integration times. Equation
7 provides the detection statistic shown in the bottom
right panel of the figure. The tone is detected easily.

Constant-Envelope Waveforms. For constant-enve-
lope waveforms,

A = ( , , ) .e ei i Lθ θ1 K

Demodulation amounts to estimating the phases {θk}.

FIGURE 4. Simulation of the detection of a tone, or spectral line, in the presence of a broadband interferer. Spectral lines in the
waveform of the signal of interest, which are caused by residual carrier or data periodicities, can be detected by forming a dis-
crete Fourier transform (DFT) of  the data. Algorithms such as frequency feature processing (FFP) combine the coherent inte-
gration provided by a DFT with the spatial nulling provided by an antenna array to enhance substantially the detectability of the
signal of interest.
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We observe that

arg min ( , , ) .arg arg
A Y A− =2 1e ei y i yLK

Substituting the corresponding value of A into the
equivalent statistic in Equation 6 yields

Y A

A

−
= −−

=
∑

2

2
1

1

21L yk
k

L

( ) .

This is one member of a family of statistics suggested
for constant-modulus signals in the literature. These
statistics require the minimization of

( )yk
p q

k

−∑ 1

for some p and q. The values p = 1, q = 2 provide a
maximum-likelihood approach to adaptive beam-
forming for constant-modulus signals.

A variant of the constant-modulus technique,
organized in a manner that provides beamforming
for multiple cochannel constant-modulus signals, is
called waveform improved nulling (WIN). The per-
formance of WIN is discussed in a later section.

Maximum Likelihood Using Antenna Calibration.
The most general data-adaptive procedures use cali-
bration data as well as waveform features to perform
direction finding (see Reference 16 for a more general
formulation). Such approaches can be more difficult
to implement than some of the techniques discussed
above, and may also suffer from sensitivity to calibra-
tion errors. Maximum-likelihood procedures are sim-
plified by assuming that antenna calibration cannot
be used. Waveform features alone can be used to pro-
vide good blind beamforming, which then can be
used to aid direction finding (see the section entitled
“Copy-Based Direction Finding).

In the applications below, the “component” Zq of
the data array Z introduced in the appendix entitled
“Maximum-Likelihood Parameter Estimation” is a
block of samples, but the treatment in the appendix is
much more general. With an M × J matrix X, a J × S
matrix A, and an S × L matrix T, and the definition
S Z Z= q q

H, the notation introduced in the appendix
allows us to write the maximum-likelihood solution
(actually the generalized likely ratio test, or GLRT)

for Gaussian data with modeled mean E[Z] = XAT
and covariance R as

X S X

X ZZ X
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R

R A
R Z XAT Z XAT
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(8)

with the maximum-likelihood estimate of A given by

( ) ( ) .X S X X S ZT TTH H H H− − − −1 1 1 1 (9)

Some special cases illustrate the scope of this ma-
chinery. These applications are, in most instances,
fairly direct consequences of the expression above. No
attempt is made to exhaust all possible applications.
All of the applications discussed below assume J = 1;
in other words, there is only one signal of interest.
This assumption doesn’t mean that only one signal of
interest can be detected, copied, or located. It means
only that the signals are found one at a time, since the
maximum-likelihood statistic is based on a single sig-
nal (but arbitrary Gaussian interference) model.

Pulsed Signals. The special case in which J = 1 and
the S × L matrix T = (IS 0) corresponds to a pulsed
emitter. In fact, A is the row vector ( , , )a aS1 K  in this
case, and hence

AT = ( , , , , , , ) ,a a aM1 2 0 0K K

which corresponds to a signal that is “on” only during
the first S samples. For the particular value of T,

Z Z Z Z Z= ≡( ) ( )p q new old

expresses a partitioning of the observations Z into
what are called old samples, which don’t contain the
signal of interest, and new samples, which do. The
GLRT, which is equivalent to the maximum-likeli-
hood statistic, becomes

max
( ) ˆ ( )

( ) ˆ ( )
,

u

H

H

L

L S

u u

u u−

−

−
X R X

X R X
old

1

1 (10)

where
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and where X(u) is the array-response vector ( J = 1)
parameterized by the angle of arrival u (which can
stand for both angular components). This expression
provides a direction-finding statistic that can be used
for pulsed waveforms.

When beamforming is desired, it is often better if
we assume that the array-response vector X is com-
pletely unknown; otherwise, calibration errors can re-
sult in a suboptimal beamformer, especially if the cali-
bration errors are large. In this case the estimate of A
is given by

A W Z= =( , , ) ,a aS
H

1 K new

with

W R R= −emax( ˆ ˆ ) ,old new
1

where emax( )⋅  denotes the principal eigenvector (and
λmax( )⋅  denotes the corresponding eigenvalue) of its
argument. W is determined by Equation 9 upon solv-
ing for the (unconstrained) X that maximizes Equa-
tion 10. We base detection on the GLRT equivalent
(i.e., monotonically related) statistic

λmax( ˆ ˆ ) ,R Rold new
−1

or, more commonly, on a suboptimal approximation

tr[ old new
ˆ ˆ ].R R−1

Figure 5 shows the copy and detection of pulsed
signals received at HF by a large-aperture ground-
based array. The array geometry is L-shaped, as indi-
cated in the figure. Detection occurs on pulse leading
edges; a new copy weight (beamformer) is deter-
mined at each leading edge and provides the beam-
former outputs shown.

FIGURE 5. Exploitation of  pulsed waveforms. Adaptive beamforming can be used to detect and copy intermittent signals buried
in strong cochannel interference. A detection statistic and an adapted beam can be formed by comparing samples taken before
(old looks) and after (new looks) a pulsed signal’s leading edge. An example based on measured high-frequency data shows
the ability of  adaptive event processing (AEP) to detect and copy pulsed waveforms in strong cochannel interference.
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Dual Polarization. Detection and direction finding
can also be accomplished with polarized signals. We
consider the case of pulsed waveforms as an example.
Let X (u) denote an M × 2 matrix parameterized by u
whose columns span the two-dimensional subspace
representing the array responses spanned by all inci-
dent polarizations with angle of arrival u. The matrix
X  is a result of calibrating a diversely polarized array.
Any incident polarization can be written as X (u)q,
where q is an unknown two-vector describing the po-
larization components of the signal in the basis pro-
vided by the columns of X (u). From above, the direc-
tion finding (or detection) statistic becomes

max
[ ( ) ˆ ( )]

[ ( ) ˆ ( )]

[ ( ) ˆ ( )] [ ( ) ˆ ( )] .max

q

q R q

q R q

R R

H H

H H

H H

u u

u u

u u u u

X X

X X

X X X X

old

old

−

−

− − −= { }

1

1

1 1 1λ

This expression is most useful as a direction-finding
statistic, since the computation involved in using it
for detection is excessive, given the potential perfor-
mance improvement.

Statistical Signals

An alternative to model-based exploitation involves
statistical properties of the waveforms. For example,
differences between the spectra of the signal of inter-
est and the spectra of the interference can be lever-
aged to form adaptive beams. In the extreme case,
when the spectra are disjoint, beamforming is easy.
However, even when the spectra of the interference
and the signal of interest are similar, some degree of
adaptive beamforming is possible.

Another statistical approach uses higher-order mo-
ments to exploit the non-Gaussian character of typi-
cal signals. A number of procedures are available.
Some fourth-order cumulant techniques offer the
ability to form beams for multiple, statistically identi-
cal non-Gaussian emitters.

Spectral Differences. One class of algorithms ex-
ploits spectral differences between the signal of inter-
est and the interference. The leverage is based on the
constancy of the signals’ array response (including the
interferers’ array response) over frequency (the nar-
rowband assumption) in conjunction with the varia-

tion of the signals’ power over the same band. If the
signals are not spectrally identical over the averaging
time of the algorithm, then some degree of signal
separation is possible. Spectral differences are revealed
by cutting the band into frequency cells and forming
array covariances in each subband. The discussion be-
low formulates the problem in more detail by using
the notation and notions previously established. We
have simplified the problem formulation to improve
the exposition.

Recall that the M × L data matrix Z has mean

E[ ] .Z X A=

We assume M = S so that X is S × S. In other words,
there are as many signals as sensors. When S < M, it is
possible to reduce the data Z to a signal subspace and
exercise the algorithm there; this reduction is not dis-
cussed further. We assume that the covariance of any
column of Z can be written as IM . Let Fk be an l × L
matrix with orthonormal rows. Filtering the data Z in
“cell” or “subband” k can be represented by ZFk

H.
This S × l array can be interpreted as l outputs from S
sensors in the kth subband. If we define Ak = AFk

H,
then the mean of ZFk

H is given by XAk and the cova-
riance of any column of ZFk

H is IM  (see Equation A in
the appendix entitled “Maximum-Likelihood Param-
eter Estimation”).

Up to now, A (along with Ak) has been treated as a
parameter matrix representing the signal amplitudes.
For the remainder of this section, we consider A
(along with Ak) to be random with zero mean. Let
P A Ak k k

HL= −1E[ ] and P AA= −L H1E[ ]. We as-
sume P and Pk are diagonal. In other words, the sig-
nals and their spectral components are uncorrelated.
We define

R ZZ XPX I

R ZF F Z XP X I

R I R R I

R I I R I

= = +

= = +

= − −

= − −
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−

− −
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H H
M

k k
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k
H
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M

k M k M

M M M

1

1

1 2 1 2

1 2 1 2

E

E

[ ]

[ ]

( ) ( )

( ) ( ) .

/ /

/ /

R

Q

The expression for Rk can be verified with the help of
Appendix A. Then (recall that P and Pk are diagonal)

R Qk k
H− = −U P P U( )1
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with common unitary matrix

U R I XP

XPX XP

= −

=

−

−

( )

( ) .

/ /

/ /

M
H

1 2 1 2

1 2 1 2 (11)

Since PkP–1 is a diagonal matrix for each k, the above
indicates that the R k – Q matrices are simultaneously
diagonalizable by the unitary matrix U. There are a
variety of procedures for performing the simulta-
neous diagonalization; this step in the process is not
considered further. Once U is obtained, we can esti-
mate X by using Equation 11. We do not have to
know P, because it is diagonal and hence affects the
estimate of X by harmlessly scaling its columns. Di-
rection finding and beamforming can be based on the
estimate of X.

An important special case occurs when k = 1 or 2.
For the k = 2 subband case, we redefine R = R2 and
P = P2. The above argument is still valid. The com-
mon eigenvectors ω of R 1 – Q  and R 2 – Q  solve

( ) ( ) ,R Q R Q1 2− = −ω λ ω

which is equivalent to the generalized eigenvalue
problem

( ) ( ) .R I w R I w1 2− = −M Mλ

The columns of X become the eigenvectors of

( )( ) ,R I R I1 2
1− − −

M M

which is often called a change matrix. Note that the
eigenvalues of the change matrix are the diagonal en-
tries of P P1 2

1− . If these entries are not distinct, we can-
not separate signals in this fashion.

The beamforming achieved by using X is occasion-
ally close to optimal but not nearly as good as the
near-optimal performance of maximum-likelihood
techniques. However, in the strong signal case (i.e.,
IM = 0), a Cramér-Rao bound can be formulated that
is often approached by the above technique.

Clearly, the level of performance that we can
achieve depends significantly on the way the band is
cut into spectral pieces, or subbands, to reveal spectral
differences between the signals. In many cases, two
subbands, as just discussed, offer an interesting level
of performance, but more subbands have the poten-
tial to increase performance substantially.

Although spectral difference techniques have been
discussed in terms of cutting the band into subbands,
other time-frequency slices may be appropriate. For
example, wavelet transforms can be used. In Figure 6,
a broadband, spectrally flat signal and a frequency-
shift-keyed signal are separated by exploiting differ-
ences in the waveform spectra, as discussed above.

Cumulant Eigenanalysis. Higher-order moment
techniques can be used to provide coarse initial
beamformers that are refined by the maximum-likeli-
hood procedures described above. This section pre-
sents a brief introduction to cumulant eigenanalysis
(CUE), which was introduced by J.F. Cardoso [17].
Cumulants are defined traditionally in terms of the
moment generating function. Let z be a random
complex vector of length M and w a fixed complex
vector. The moment generating function of

z = ( , )z zM
T

1 K

is given by

φz
w zw( ) [ ],( )= ℜE e

H2

where ℜ( ) indicates the real part of the argument
(when there is no confusion, the subscript z on φ is
suppressed). An important property of moment gen-
erating functions is their factorization with indepen-
dent random variables. Let x and y be independent
complex random vectors with z = x + y. Then

φ φ φz x yw w w( ) ( ) ( ) ,=

at least in a formal sense. Moments (really mixed mo-
ments) are defined by differentiating the moment-
generating function. We define the complex differen-
tial operators

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂w u

i
v w u

i
v

= − = +1
2

1
2

( ) ( ) , and 

where w = u + iv is the expression of w in terms of real
and imaginary parts. We can view w as a component
of w = ( , )w wM

T
1 K . The fourth-order moment ten-

sor of z has components

M
w w w w

z z z zijkl
i j k l

i j k l= =
=

∂ φ
∂ ∂ ∂ ∂

4 ( )
[ ],

w

w 0

E

where E[·] denotes expectation. Note that this defini-
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tion makes sense as long as the mixed fourth-order
moments exist.

Cumulants are defined by performing a similar dif-
ferentiation on the log of the moment generating
function. Thus the components of the second-order
cumulant of a mean-zero random vector z are

C
w w

z zij
i j

i j
( ) ln ( )

[ ].2
2

0

= =
=

∂ φ
∂ ∂

w

w

E

This expression is simply the covariance matrix (and
second-order moment) of the random vector z. The
superscript indicates the order of the cumulant. The
fourth-order cumulant is expressed by

C
w w w w

z z z z z z z z

z z z z z z z z

ijkl
i j k l

i j k l i j k l

i k j l i l j k

( ) ln ( )

[ ] [ ] [ ]

[ ] [ ] [ ] [ ].

4
4

0

=

= −

− −

=

∂ φ
∂ ∂ ∂ ∂

w

w

E E E

E E E E

We can express the factoring of the moment generat-
ing function with independent summands z = x + y as

ln ( ) ln ( ) ln ( ) ,φ φ φx y zw w w+ =

which suggests that the cumulant (C = C (4) here and
in the following) is additive. In other words,

C C C( ) ( ) ( ) ,x y x y+ = +

with independent mean-zero summands x and y. This
result can be shown directly from the definition and
requires only the existence of all moments up to the
fourth order. The notation expresses the cumulant as
a tensor that is a function of the complex-valued ran-
dom vector z. C is additive, and C( z) = 0 for mean-
zero complex Gaussian random vectors. The second
relation is a direct consequence of the well-known
complex Gaussian moment factoring theorem [18].

The analysis in the appendix entitled “Cumulant
Eigenanalysis” demonstrates that the whitened data
( ) /R I Z− −

M
1 2  can be used to estimate the matrix

FIGURE 6. Spectral difference processing (SDP). In some cases, cochannel signals can exhibit statistical differences that
are observed in the spectral domain. These differences may be large, as shown in the top part of  the figure for two signals
of different types of modulation (spectrally flat and frequency-shift-keyed, or FSK), or the difference may be small (for sig-
nals with the same nominal modulation). The differing spectra facilitate the formation of adaptive beams for each signal.
SDP, as with most of the techniques discussed in this article, does not rely on antenna calibration for beamforming.
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( ) / /R I XP− −
M

1 2 1 2

when P is diagonal. We can use this matrix in turn to
estimate the columns of X up to complex scale fac-
tors, thus providing blind array-response estimates.
The performance of CUE is discussed below.

Copy-Based Direction Finding

Our initial discussion of direction finding in the sec-
tion entitled “Calibration-Based Adaptive-Array Pro-
cessing” revolved around techniques that do not uti-
lize waveform features. In contrast, the discussion of
direction finding in the previous section considered
some techniques that utilize waveform features for
joint beamforming and direction finding. An alterna-
tive approach to direction finding is based on forming
adaptive beams first, without the use of array calibra-
tion, and then incorporating array calibration to per-
form direction finding. Such direction-finding proce-
dures are called copy-based procedures. Waveform
features can be used to form adaptive beams in the
manner discussed in the previous section. In many
cases, direction-finding performance can be enhanced
significantly over that achieved by the calibration-
based techniques discussed earlier by using the esti-
mates of signal amplitudes provided by the kind of
adaptive beamforming treated above. Some examples
of copy-based direction finding are described below.

Least-Squares Procedures

The least-squares estimates of the array response X
and signal amplitudes A are given by

ˆ ( )
ˆ ( )

A X R X X R Z

X ZA AA

=

=

− − −

−

H H

H H

1 1 1

1

(for the derivation of these expressions, see the appen-
dix entitled “Least-Squares Procedures”). Note that
the estimator X̂  is independent of the spatial covari-
ance R; the performance of the estimator depends
strongly on R, however, as seen below. When the
maximum-likelihood techniques we discussed in the
section entitled “Modeled Signals” are used to esti-
mate A, the estimate of X is expressed by X̂  above.
But even more generally, if A can be estimated by any
procedure, we can form the least-squares estimate of

X given above. We can base practical direction-find-
ing techniques on an estimate of a signal’s array re-
sponse. Once the estimate is made, we can look it up
in a calibration table by, for example, minimizing the
angle between the estimated array-response vector
and the calibration-table entries.

Copy Correlation

An alternative to the joint least-squares procedure just
discussed relies on correlating the beamformer output
for a particular signal with the output of a conven-
tional adaptive beamformer of the form

W R X( ) ˆ ( ) .u u= −1

Here X(u) represents the modeled array response of a
particular signal with an angle of arrival u and

ˆ .R ZZ= −L H1

The motivation for this approach is that W(u), for
the correct angle of arrival u, should be a good
beamformer and hence its output should be a good
approximation to the time series of the copied signal.

Let W denote a column vector expressing a copy
weight obtained, for example, from one of the copy
algorithms discussed above. The correlation coeffi-
cient of the copy outputs from the two beamformers
becomes

[ ( ) ]( )

( )[ ( ) ˆ ˆ ( )]

( )

( ˆ )[ ( ) ˆ ( )]
.

W Z W Z

W ZZ W X R ZZ R X

W X

W R W X R X

H H H

H H H H

H

H H

u

u u

u

u u

2

1 1

2

1

− −

−=

This statistic has the form of a product of a Capon
spectral estimator [19] and the gain of the copy
beamformer.

Advantage of Joint Direction Finding

To understand the benefits of waveform exploitation,
we ask how well can the array response of a signal be
estimated, given perfect knowledge of the waveform.
This ideal example is obviously extreme, but it illus-
trates the power of feature-based direction finding.

We recall (in the appendix “Maximum-Likelihood
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Parameter Estimation”) that the covariance cov(Z) of
the data matrix is given by R ⊗ ∆ . We can show (see
Equation A in the appendix entitled “Maximum-
Likelihood Parameter Estimation”) that

cov( ) ( ) ( )AZB AR A B B= ⊗H H ∆

for arbitrary A and B. If ∆ = IL , then, since E[Z] =
XA, the least-squares estimate X̂  of X has the statistic

E[ ˆ ]

cov( ˆ ) ,

X X

X R P

=

= ⊗− −L 1 1

where P = AAH/L. Thus the covariance of the esti-
mate of the kth signal’s array response is given by
L–1PkkR, where the superscript indicates an entry of
the inverse matrix.

The “angle” between two array responses q and r is

b beamwidths (see the sidebar entitled “Definition
and Properties of Beamwidths”), where

q r

q r

H
b= 





cos .
π

2

When b = 0, the array responses coincide; when b = 1,
the array responses are orthogonal. For small estima-
tion errors (a large number of samples), the mean-
squared error (measured in square beamwidths) for
estimating the array response of the kth signal (which
is denoted X(k), the kth column of X; we also assume

X( )k = 1) becomes approximately

( / ) [ ( ) ( ) ( )].2 2 1π L k kkk H− −P R X RXtr

Two special cases are of interest. If R = IM and P is
diagonal, the root-mean-squared (RMS) error in

FIGURE 7. Copy and direction-finding performance for four different signal processing algorithms. Root MUSIC, an established
technique for direction finding, can also be used to provide beamforming (by a method mentioned briefly in the section entitled
“Adaptive Beamforming”). The traditional beamsum performance is shown here as a reference. The other algorithms—
cumulant eigenanalysis (CUE), waveform-improved nulling (WIN), and adaptive event processing (AEP)—are based on wave-
form features and are used primarily for adaptive beamforming. These three techniques can also provide direction finding by
methods discussed in the text. The top row of plots shows the accuracy of line-of-bearing estimates for three cochannel sig-
nals observed by a test aircraft over several minutes. The red x-markers show the angle estimates and the black lines show the
actual line of bearing for the three signals in this experiment. The bottom row of plots shows the SINR at the output of a
beamformer pointed at the middle signal. The CUE and WIN techniques are significantly better at copy than the beamsum and
root MUSIC techniques, and AEP is nearly indistinguishable from the ideal SINR.
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FIGURE 8. Calibration residuals. Good direction-finding
performance requires accurate models of antenna patterns.
The uncertainty of antenna-array calibration is measured by
residuals that express the difference between measured and
modeled array responses. Calibration based on vertical po-
larization models (pattern response equalization for spatial
similarity, or PRESS) of the array response are used for the
results shown in Figure 7. Although antenna elements and
signal sources nominally have a vertical polarization re-
sponse, the measured data are explained much more accu-
rately, and with substantially lower residuals, by using dual-
polarization models (double PRESS) for the array response.

beamwidths becomes

( / ) ,2
1

π
N
L kk

−
P

where Pkk denotes the average power of the kth signal.
The case R ≠ IM corresponds to least-squares estima-
tion of some, but not all, cochannel signals. For ex-
ample, if R I VV= +M I

Hp  for a unit vector V,
which models a single interferer with ASNR pI , then
the RMS error becomes

( / )
sin ( / )

,2
1 22

π
πN p b

L
I

kk

− +
P

where b is the beamwidth separation of the signal and
interferer. The RMS error is large if the interferer is
much stronger than the signal. In effect, the estima-
tion errors in the direction of the interferer’s array
response have a large variance. However, if the wave-
form of the interferer is exploited in addition to that
of the signal of interest (i.e., the interferer is incorpo-
rated in the least-squares estimation), then the esti-
mation error does not depend on the emitter separa-
tions and interference power. Direction-finding esti-
mates for the two emitters are decoupled.

Performance Examples

Figure 7 shows beamforming and direction-finding
results for four different algorithms with measured
data. The data and experiment design are discussed
elsewhere [4]; here we limit the discussions to con-
nections with the algorithms introduced earlier.

The data shown come from narrowband FM wave-
forms collected at VHF aboard an airborne platform;
all processing was done off line. The environment
consists of three cochannel signals of varying powers
and geometries. Four antenna elements are used in a
nonlinear array. Time along the flight path is indi-
cated in the x-axes of the subplots. The marker sym-
bols indicate direction-finding estimates and the solid
lines indicate the corresponding true off-broadside
angles of arrival, measured in degrees and in beam-
widths. In this figure, the signal from the middle
emitter is 20 dB below the signals from the outer
emitters. The signal separations range from almost
one beamwidth to less than a tenth of a beamwidth.

Also shown in the figure is the SINR measured at the
output of the copy beamformer for the middle signal.
This SINR is compared with several other kinds of
SINR that were introduced earlier.

The bottom row of plots in Figure 7 shows the
ASNR of the middle signal as a function of time
along the flight path. Also shown is the ideal ASINR
and the ASINR achieved by the copy algorithm. For
reference, the performance of a beamformer pointed
at the middle signal is shown; since the middle signal
is about 20 dB below the other signals, the beam-
former output SINR is correspondingly low. Note
that the ideal ASINR curve and the ASNR curve re-
main unchanged on all subplots.

The first column of panels in Figure 7 shows the
performance of root MUSIC. This direction-finding
algorithm has good accuracy and resolution as well as
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robustness to calibration errors. Direction-finding
performance is good until the separation between sig-
nals is small, near the end of the flight path. Copy is
based on the direction-finding estimates provided by
root MUSIC. Typically, copy is about 5 dB worse
than ideal unless the direction-finding estimates are
poor, leading to dropouts. The remaining algorithms
provide copy much closer to ideal. This is especially
true for waveform improved nulling (WIN), a con-
stant-envelope technique based on the blind-adaptive
procedures discussed in the earlier section on mod-
eled signals, and adaptive event processing (AEP), a
maximum-likelihood technique for pulsed signals.
Cumulant eigenanalysis (CUE) is a higher-order mo-
ment procedure discussed earlier. All three algorithms
provide blind (i.e., without any calibration) copy.

Direction-finding estimates for two of the algo-
rithms (CUE and WIN) are based on the copied data.
AEP uses the maximum-likelihood statistics dis-
cussed previously to estimate directions for each emit-

FIGURE 9. Copy and direction-finding performance with improved antenna calibration. The improvements in antenna calibra-
tion provided by dual-polarization models (double PRESS) of array response leads to improvements in the accuracy of direc-
tion finding. Shown here is the direction-finding and beamforming performance for root MUSIC, polarization-diverse MUSIC,
and AEP (with and without polarization diversity), using PRESS and double PRESS for array calibration. Double-PRESS cali-
bration yields significant improvements in direction-finding performance in both cases, as shown in the top row of  plots. The
beamformer built from root MUSIC also shows improvement with double-PRESS calibration, as shown in the bottom row of
plots. AEP beamforming remains unchanged because it does not utilize antenna calibration.

ter. The outer emitters are located accurately, but re-
solving the middle signal is difficult. CUE uses the
copy correlation procedure discussed earlier to per-
form direction finding. The performance on the
middle signal appears slightly better with CUE, but
the direction finding on the outer signals is worse.
WIN uses a joint least-squares approach similar (but
not identical) to the least-squares approach discussed
earlier (see also the appendix entitled “Least-Squares
Procedures”). In this case, all three signals are resolved
and have good direction-finding estimates. The outer
signals, which are about 20 dB stronger than the
middle signal, must be copied well, since the least-
squares procedure attempts to subtract them from the
data in order to perform direction finding on the
middle signal.

Antenna Calibration

All of the direction-finding techniques just discussed
have to deal with imperfect antenna calibration.

0

20

40

60

–1.0

–0.5

0

0.5

1.0

Time (sec)

M
id

dl
e-

em
itt

er
 c

op
y 

S
IN

R
 (d

B
)

O
ff

-b
ro

ad
si

de
 a

ng
le

 (B
W

)

–90
–60

–30

0

30

60
90

O
ff

-b
ro

ad
si

de
 a

ng
le

 (d
eg

)

3000 3100 3000 3100 3000 3100 3000 3100

ASNR

Copy algorithm

Beamsum

Ideal ASINR

PRESS
 Root MUSIC

Double PRESS
Polarization-diverse MUSIC

PRESS
AEP

Double PRESS
AEP



• FORSYTHE
Utilizing Waveform Features for Adaptive Beamforming and Direction Finding with Narrowband Signals

VOLUME 10, NUMBER 2, 1997 LINCOLN LABORATORY JOURNAL 121

Nominally, the signals used in the experiments have
vertical transmit polarization. However, near-field re-
flections can rotate the received polarizations on the
airframe, especially as the orientation of the airframe
changes. If we take the polarization dependence of
the antenna response into account, we can substan-
tially reduce calibration residuals (the errors between
modeled array response and true array response). Fig-
ure 8 shows calibration residuals as a function of off-
broadside angle for a six-element linear array. The x-
markers indicate the residuals present in the
uncorrected patterns; the triangular markers show on
average a 14-dB reduction in the residuals after cali-
bration. This level of calibration is used for the results
shown above in Figure 7.

By taking source polarization into account, we can
reduce the calibration residuals another 11 dB on av-
erage, which leads to an improvement in direction-
finding performance, as indicated in Figure 9. The
figure shows before-and-after plots of copy and direc-
tion-finding performance for MUSIC and AEP for a
slightly different set of data than that shown in Figure
7. Clearly, the improved calibration has a substantial
impact on direction-finding performance. Both MU-
SIC and AEP resolve the signals and perform direc-
tion finding with good accuracy.

Conclusions

Waveform features can be exploited to perform adap-
tive beamforming and direction finding for narrow-
band signals in cochannel interference. For many
emitters, we can use a few generic signal features such
as constant envelopes, periodicities, or leading-and-
trailing edges of signal bursts to perform near-optimal
adaptive beamforming without using any array cali-
bration data. The beamformer outputs can be used to
aid direction finding in several ways. The resulting
copy-based direction-finding estimates can be signifi-
cantly better than those provided by conventional
high-resolution estimators such as MUSIC. It is still
important, however, to achieve the best possible level
of calibration in order to maximize direction-finding
performance. Calibration for both senses of polariza-
tion can provide significant improvements in calibra-
tion accuracy that result in substantially better direc-
tion finding.
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A P P E N D I X  A :
M A X I M U M – L I K E L I H O O D

P A R A M E T E R  E S T I M A T I O N

Some additional notation and machinery is re-
quired. We consider data-independent matrices F and
D that pre-multiply and post-multiply the data Z.
The matrix F can represent spatial processing of the
data, while the matrix D can represent temporal pro-
cessing. We can easily show that

E E[ ] [ ] ,FZD F Z D=

and that

cov[ ] (FZD FRF D CD= ⊗H H) ( )* (A)

(see Equation A1-44 in Reference 16). In the follow-
ing, we assume that C = IL , the L × L identity matrix.

An orthonormal basis of the row space of T can be
chosen by defining

P TT T= −( ) ./H 1 2

This is an S × L array whose rows span the same sub-
space as the rows of T. Furthermore, the rows of P are
orthonormal; that is,

PP IH
M= .

We choose a K × L array Q (where K = L – S ) whose
rows are orthonormal and span the orthocomplement
of the row space of P. The P and Q arrays have the
following properties:

I P P Q Q

PQ 0

PP I

Q Q I

L
H H

H

H
S

H
K

= +

=

=

= .

We post-multiply the data array Z with a data-in-
dependent, unitary L × L matrix UL

H, where

U
P

QL =






.

Then

 Z be an M × L array of vector samples of the out-
put of an M-element antenna array. Each column of
Z is a snapshot of the array output at a particular
time. We assume below that these snapshots are inde-
pendent, although the initial formulation is more
general. The entries of Z are taken to be jointly com-
plex circular Gaussian with mean E[Z ] = XAT. X is
an M × J array whose columns represent the array re-
sponses of J emitters. T is an S × L array whose rows
can be interpreted as time-domain-basis waveforms.
A is a J × S array of signal amplitudes. In the case of
interest here, S = 1 and J = 1 (the treatment is more
general than the applications in the text). Then XAT
expresses the time history of a single coherent wave-
form. In the formulation of hypothesis-testing prob-
lems in Reference 16 and in the text, the A array is as-
sumed to be completely unknown. However, prior
knowledge of X and T may vary considerably, leading
to different forms of parameter estimators.

The covariance of Z is given by

[cov( )] [( )( ) ],( , );( , )
*Z i j k l ij ij kl klZ Z Z Z= − −E

where the overbar designates expected value and the *
denotes complex conjugate (see also the appendix en-
titled “Least-Squares Procedures”). It is often the case
that the covariance has the special structure expressed
by

cov( ) ,*Z R C= ⊗

where the Kronecker (tensor) product of matrices A
and B is defined by

( ) .( , );( , )A B⊗ =i j k l ik jlA B

The tensor-product structure of the covariance can be
interpreted as a factoring into spatial (R ) and tempo-
ral (C ) factors. For the applications of interest here,
we assume the factor C is known. It can express, for
example, the time-domain correlation imposed on a
wideband waveform by the bandpass characteristic of
a receiver.
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ZU ZP ZQ Z ZL
H H H

p q= ≡( ) ( )

is a left-right partition of the transformed data. Post-
multiplication by UL

H  constitutes time-domain pro-
cessing of the data array Z with a bank of orthogonal
filters. The covariance machinery presented above
tells us that

cov( ) ( ) .*ZU R U I U R IL
H

L L L
H

L= ⊗ = ⊗

In order to find the transformed mean of Z, we write

XAT XBP= ,

where

B A TT= ( ) ./H 1 2

Then

E

E

[ ]

[ ] .

Z XBPP XB

Z XBPQ 0

p
H

q
H

= =

= = (B)

Thus Zp and Zq are independent Gaussian arrays
with independent columns and identical column
(spatial) covariances. The Z q array has zero mean,
while the Z p array has a nonzero mean containing the
signal parameters. Although the coordinates just de-

scribed are based on the true signal parameters ex-
pressed by T, these coordinates also make sense when
T is regarded parametrically, as is the case below. Of
course, the signal means (Equation B) are no longer
valid, but the covariance is unchanged.

Let S Z Z= q q
H for use below. In addition, note

that

ZZ Z Z SH
p p

H= + .

From Reference 16 (see Equations 2-1, 2-2, 2-8, and
2-57), the generalized-likelihood-ratio test (GLRT),
maximized over A, can be written

X S X

X ZZ X

R

R

R A
R Z XAT Z XAT

R
R ZZ

H

H H

L

ML L

ML L

e

e

H

H

−

−

− − − − −

− − −













=
−

−

1

1

1

1

( )

max

max
,,

[ ( )( ) ]

( )

π

π

tr

tr

with the maximum-likelihood estimate of A given by

( ) ( ) .X S X X S ZT TTH H H H− − − −1 1 1 1

A P P E N D I X  B :
C U M U L A N T  E I G E N A N A L Y S I S

    that z = ax for a scalar a and a
vector x = ( , , )v vN

T
1 K ,

C a C a v v v vijkl i j k l( ) ( ) ,x =

where C(a) is the (scalar) fourth-order cumulant of
the scalar a. When z is composed of several indepen-
dent signal components, the cumulant matrix is the
sum of each signal’s contribution.

Let X denote the M × S matrix of array responses as
described in the main text of the article. Specifically,
the cth column of X is an M-vector that expresses the
wavefront of the cth emitter. Let a = ( , , )a aS

T
1 K  be

a column vector of length S with random, mean-zero
components ac denoting the independent complex

amplitudes associated with each signal. Let b be an
M × 1 vector of independent additive mean-zero
complex Gaussian noise. We assume

z Xa b= + .

For use below, we define the tensor product of two
vectors x and y as the vector whose αth component is

( ) ,x y x y⊗ =α i j

where α = ( i j ). The definition extends obviously for
more than two factors; it is an “associative” product.

By using the additivity of the cumulant and the
fact that the cumulant of a Gaussian vector is zero, we
have
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C z C X X X X

C X X X X

( ) ( )( )

( )( ) ( ) ,

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

∑
∑

a

a

k k k k k
k

k k k k k
k

where X ⋅k denotes the kth column of X. Recall that
the Vec of a rectangular array is the vector formed by
stacking together in sequence the rows of the array. In
particular, for column vectors x and y,

Vec( ) .xy x yT = ⊗

Thus we can express the cumulant as

 C z C X X X X( ) ( )( )( ) .= ⊗ ⊗












⋅ ⋅ ⋅ ⋅∑Vec ak k k k k
H

k

This notation merely formalizes the “matrix” view-
point of C. That is, C, viewed as a matrix, has the
structure shown within the Vec. In the particular case
in which the columns of X are orthonormal, this
structure expresses an eigenanalysis of the “matrix” C
because

( ) ( )X X X X⋅ ⋅ ⋅ ⋅⊗ ⊗ =j j
H

k k jkδ

since, for arbitrary vectors d, e, f, and g,

( ) ( ) ( )( ) .d e f g d f e g⊗ ⊗ =H H H

Because the columns of X are arbitrary array-response
vectors, they are not orthonormal. However, a change
of coordinates leads to an equivalent problem with
orthonormal array-response vectors.

We assume P aa= E[ ]H  is diagonal and S = M.
Then whitening the data as described in the section of
the article on spectral differences yields

( ) ( ) ,/ /R I z Ua R I b− = ′ + −− −
M M

1 2 1 2

where ′ = −a P a1 2/  are the normalized signal ampli-
tudes and the matrix U XPX XP= −( ) / /H 1 2 1 2 is uni-
tary. Let ′ = ′ ′a ( , , )a aS1 K . The properties of C men-
tioned above lead to

C R I Z

C U U U U

( )

( )( )( ) .

/−[ ]
= ′ ⊗ ⊗













−

⋅ ⋅ ⋅ ⋅∑

M

k k k k k
H

k

a

1 2

Vec

Because the columns of U are orthonormal, eigen-
analysis of C yields the signal subspace (span of the
top S eigenvectors)

Span ( ), ,( ) .U U U U⋅ ⋅ ⋅ ⋅⊗ ⊗{ }1 1 K S S

Note that C is an S2 × S2 hermitian matrix but has
only at most S nonzero eigenvalues. Any element of
this subspace can be written in the form

ρ

ρ ρ

m m m
m

S
H

U U

U U

⋅ ⋅⊗

= ⋅ ⋅[ ]
∑

Vec diag( , , )1 K
(A)

for, in general, arbitrary complex ρk. (The eigenspaces
of C have “real” structure, as can be shown from some
symmetries of C ; thus the ρk can be chosen as real.)
Typically, the ρk are distinct. If this is the case, Equa-
tion A can be eigenanalyzed to recover the individual
vectors U⋅s . More generally, the matrices correspond-
ing to the vectors given in Equation A can be diago-
nalized simultaneously by the unitary U. Since

( ) ,/ /R I U XP− =M
1 2 1 2

Equation A determines the columns of X up to un-
known scale factors when P is diagonal.
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A P P E N D I X  C :
L E A S T – S Q U A R E S  P R O C E D U R E S

For arbitrary matrices A and B, define the Kronecker
product A B⊗  so that ( )( , )( , )A B⊗ =i j k l ik jlA B . If
Vec( )⋅  is defined as above (in the appendix entitled
“Cumulant Eigenanalysis”), unwrapping the rows of
a matrix, then

( ) ( ) ( ) .A B C ACB⊗ =Vec Vec T

Recall that ( )A B A B⊗ = ⊗− − −1 1 1 and note that

Vec Vec tr( ) ( ) ( ) .A B A BH H=

The covariance of an M × L matrix Z is defined as

cov( ) ( [ ]) ( [ ]) .Z Z Z Z Z= − −[ ]E Vec E Vec E H

In some special cases, the covariance factors as a ten-
sor product: cov( ) *Z R= ⊗ ∆ . In particular, this fac-
torization occurs with narrowband signals sampled at
the Nyquist rate. In this case, ∆ = IL, expressing the
fact that the columns of Z, which correspond to snap-
shots of the array output, are uncorrelated. The ma-
trix R expresses the spatial correlation (between rows)
in the data Z.

If the data Z has mean XA, as above, then we can
find (using the above relations) the least-squares esti-
mate of the product XA by solving

min ( ) cov( ) ( )

min [( ) ( ) ].

,

,

X A

X A

Z XA Z Z XA

Z XA R Z XA

Vec Vec

tr

− −

= − −

−

− −

H

H

1

1 1∆

By completing the square, we have

tr

tr

tr

[( ) ( ) ]

[{( ( ) )( )

( ( ) )

( ) } ]

[{( (

Z XA R Z XA

X Z A A A A A

X Z A A A Z Z

Z A A A A Z R

A X R

− −

= −

⋅ − +

−

= −

− −

− − − −

− − − −

− − − − −

−

H

H H H

H H H H

H H H

H

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

∆

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆
11 1 1 1

1 1 1 1

1 1 1 1 1

X X R Z X R X

A X R X X R Z Z R Z

Z R X X R X X R Z

) ) ( )

( ( ) )

( ) } ].

− − −

− − − −

− − − − −

⋅ − +

−

H H H

H H H

H H H ∆

Thus it is apparent that minima in X and A (fixing A
and X, respectively) occur when

ˆ ( )

ˆ ( ) .

A X R X X R Z

X Z A A A

=

=

− − −

− − −

H H

H H

1 1 1

1 1 1∆ ∆

Of course, the product XA does not uniquely deter-
mine the factors X and A without additional informa-
tion in the form of calibration tables (which provide
structure for X) or waveform features (which provide
structure for A). Therefore, a general estimation pro-
cedure based on the least-squares formulation must
incorporate a nonlinear optimization step that in-
cludes calibration as well as waveform features.
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